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3 Institute of Geophysics and Planetary Physics and Department of Earth and Space Science

University of California, Los Angeles, California 90095, USA

Received 5 June 2002 / Received in final form 21 November 2002
Published online 27 January 2003 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. We propose a payoff function extending Minority Games (MG) that captures the competition
between agents to make money. In contrast with previous MG, the best strategies are not always targeting
the minority but are shifting opportunistically between the minority and the majority. The emergent
properties of the price dynamics and of the wealth of agents are strikingly different from those found in
MG. As the memory of agents is increased, we find a phase transition between a self-sustained speculative
phase in which a “stubborn majority” of agents effectively collaborate to arbitrage a market-maker for
their mutual benefit and a phase where the market-maker always arbitrages the agents. A subset of agents
exhibit a sustained non-equilibrium risk-return profile.

PACS. 89.65.Gh Economics, business, and financial markets – 89.75.Fb Structures and organization in
complex systems – 02.50.Le Decision theory and game theory

The Minority Game (MG)[1] is perhaps the simplest in the
class of multi-agent games of interacting inductive agents
with limited abilities competing for scarce resources. Many
published works on MG have motivated their study by
their relevance to financial markets, because investors ex-
hibit a large heterogeneity of investment strategies, in-
vestment horizons, risk aversions and wealths, have lim-
ited resources and time to dedicate to novel strategies
and the minority mechanism is found in markets. Here,
our goal is to point out that the minority mechanism is
a relatively minor contribution to the self-organization of
financial markets. We develop a better description based
on a financially motivated payoff function. Following the
standard specification of MG, we assume that markets are
purely speculative, that is, agents profit only from changes
in the stock price. In addition, agents are chartists or tech-
nical analysts who only analyze past realization of prices,
with no anchor on fundamental economic analysis.

A MG is a repeated game where N players have to
choose one out of two alternatives at each time step based
on information represented as a binary time series B(t).
Those who happen to be in the minority win. Each agent i
possesses a memory of the last m digits of B(t). A strat-
egy gives a prediction for the next outcome of B(t) based
on the history of the last m digits of B. Since there are 2m

possible histories, the total number of strategies is given
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by S = 22m

. Each agent holds the same number s of
(but in general different) strategies among the S possi-
ble strategies. At each time t, every agent uses her most
successful strategy (in terms of payoff, see below) to de-
cide whether to buy or sell an asset. The agent takes an
action ai(t) = ±1 where 1 is interpreted as buying an asset
and −1 as selling an asset. The excess demand, A(t), at
time t is therefore given as A(t) =

∑N
i=1 ai(t). The payoff

of agent i in the MG is given by:

gi(t) = −ai(t)A(t). (1)

As the name of the game indicates, if a strategy i is in the
minority (ai(t)A(t) < 0), it is rewarded. In other words,
agents in MG try to be anti-imitative. To ensure causal-
ity, the notation −ai(t)A(t) in (1) must be understood as
−ai(t−1/2)A(t) since the actions/strategies of the agents
take place before the price (and thus the payoff) can be de-
termined. The richness and complexity of minority games
stem from the fact that agents have to be different; theo-
ries based on an effective representative agent are bound to
fail because she would represent the majority. MG are in-
trinsically frustrated and fluctuations and heterogeneities
are the key ingredients.

In order to model financial markets, several authors
have used the following or slight variants of the following
equation for the return r(t) [2,3]

r(t) ≡ ln(p(t)) − ln(p(t − 1)) = A(t)/λ, (2)

where λ ∝ N is the liquidity. The fact that the price goes
in the direction of the sign of the order imbalance A(t)
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is well-documented [4–9]. By constructing and analyzing
a large database of estimated market-wide order imbal-
ances for a comprehensive sample of NYSE stocks during
the period 1988–1998 inclusive, Chordia et al. [10] con-
firm that contemporaneous order imbalance A(t) exerts
an extremely significant impact on market returns in the
expected direction; the positive coefficients of their regres-
sions imply that excess buy (sell) orders drive up (down)
prices, in qualitative agreement with (2).

Let us assume that an agent thinks at time t − 1/2
that the unknown future price p(t) will be larger than the
known previous quote p(t − 1) and larger than the next
future quote p(t+1), thus identifying p(t) as a local max-
imum. Her best strategy is to put a sell order at time
t− 1/2 in order for the sale to be realized at time t at the
local price maximum, allowing her to profit from future
drops at later times. She will then profit and cash in the
money equal to the drop from the local maximum at time
t to a smaller price realized at t + 1 or later. In this case,
the optimal strategy is thus to be in the minority as seen
from the relation between the direction of the price change
given by the sign of r(t) and the direction of the majority
given by the sign of A(t). Alternatively, if the agent thinks
at time t − 1/2 that p(t − 1) < p(t) < p(t + 1), her best
strategy is to put a buy order at time t − 1/2, realized at
the price p(t) at time t. She will then profit by the amount
p(t+1)−p(t) if her expectation that p(t) < p(t+1) is born
out. In this case, it is profitable for an agent to be in the
majority, because the price continues to go up, driven by
the majority, as seen from (2). In order to know when the
price reaches its next local extremum and optimize their
gains, the agents need to predict the price movement over
the next two time steps ahead (t and t + 1), and not only
over the next time step as in the standard MG. This pin-
points the fundamental misconception of MG as models
of financial markets. Indeed, by shifting from minority to
majority strategies and vice-versa, an agent tries at each
time step to gain |p(t + 1) − p(t)| whatever the sign of
p(t + 1) − p(t): an ideal strategy is a “return rectifier.”
Because an agent’s decision a(t − 1/2) at time t − 1/2 is
put into practice and invested in the stock market at time
t, the decision will bring its fruit from the price variation
from t to t + 1. From (2), this price variation is simply
proportional to A(t). Therefore, the agent has a positive
payoff if a(t − 1/2) and A(t + 1/2) have the same sign.
As a consequence, in the spirit of the MG (and using the
MG notation without half-time scales), the correct payoff
function is1

g$
i (t + 1) = ai(t)A(t + 1). (3)

The superscript $ is a reminder that the action taken by
agent i at time t results at time t + 1 in a percentage
gain/loss of g$

i (t + 1)/λ (see (2)). We will refer to the
game where the agents use (3) as the “$-game” since, by

1 A similar rule for the update of scores was recently con-
sidered in another model [11] but with a different sign. After
appearance of our present paper in cond-mat, we were notified
by the authors of [11] that their sign difference was a misprint,
so that ours and their rule are the same.

using this payoff function, the agents strive to increase
their wealth. This reasoning stresses that, in real markets,
the driving force underlying the competition between in-
vestors is not a struggle to be in the minority at each time
step, but rather a fierce competition to gain money.

In reference [12], Marsili presents an interesting deriva-
tion of the minority game based on a reasonable approx-
imation of market mechanisms by emphasizing the role
of agents’expectations. By playing with the nature of the
agents’expectation, Marsili also shows that the majority
rule can emerge naturally and he studies mixed minority-
majority games to find that, in both a minority and a ma-
jority game, expectations are self-fulfilled. The difference
with our present work is multifold. First, Marsili postu-
lates beliefs that are of a very simple nature and imposes
the fraction of trend-followers (majority players) and con-
trarians (minority players). This leads to different mar-
ket regimes depending on this fraction. In contrast, our
agents do not belong to fixed populations of either ma-
jority or minority players but any agent freely shifts from
trend-follower to contrarian by using an adaptive behav-
ior. Thus, Marsili’s paper emphasizes expectations at the
cost of freezing the division between the two categories
of trend followers and contrarians. We do not use expec-
tations but only the objective of maximizing a payoff in
order to address the problem of adaptation leading to pos-
sible shifts between the two classes of strategies. We be-
lieve that our approach is more relevant to understanding
concretely real markets. There are many evidences well-
documented in the finance literature that investors may
be mainly contrarian in certain phases of the market and
become trend-followers in other phases (see for instance
Ref. [13] in which Frankel and Froot found that, over the
period 1981–1985, the market shifted away from the fun-
damentalists and towards the chartists to fuel the specula-
tive bubble on the US dollar). Thus, rather than being ei-
ther minority or majority players, our agents change adap-
tively from trend-followers to contrarians and vice versa.
Our agents are thus both opportunistic majority and mi-
nority players, as they should to represent real investors.

In the simplest version of the model, each trade made
by an agent is the exchange of one quanta of a riskless asset
(cash) for one quanta of a risky one (asset) irrespective of
the agent’s wealth or the price of the asset. The wealth of
the ith agent at time t is given as

Wi(t) = Ni(t)p(t) + Ci(t), (4)

where Ni(t) is the number of assets held by agent i and
Ci(t) the cash possessed by agent i at time t. In order to
illustrate the differences between the payoff functions (1)
and (3), we have plotted in Figure 1 an example of the
payoff (upper plot) of the best as well as the worst per-
forming MG agent using (1). Each agent is allowed to take
either a long or a short position, and we furthermore as-
sume that the agents stay in the market at all times. This
means that if e.g. an agent has taken a long position (i.e.
taken the action ai = 1 to buy a asset) the agent will not
open new positions (and therefore does not contribute to
the excess demand and price change) but keep the long
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Fig. 1. Payoff function (1) (upper graph) and wealth (lower
graph) for the MG-game showing the best (dotted line) and
worst (solid line) performing agent for a game using N = 501
agents, memory of m = 10 and s = 10 strategies per agent. No
transaction costs are applied.

position until she gets a signal to sell (ai = −1) [14]. The
lower plot of Figure 1 shows the wealth (4) corresponding
to the agents of the upper plot. The consistently bad per-
formance of the optimal MG-agent in terms of her wealth
and reciprocally the relatively good performance for the
worst MG-agent in terms of her wealth is a clear illus-
tration of the fact that a minority strategy will perform
poorly in a real market. This does not exclude however the
potential usefulness of MG strategies in certain situations,
in particular for identifying extrema, as discussed above
and as illustrated recently in the prediction of extreme
events [18]. In contrast, for the “$-game” (3) presented
here, the performance of the payoff function (3) matches
by definition the performance of the wealth of the agents.
The superficial observance by some MG of the stylized
facts of financial time series is not a proof of their rele-
vance and, in our opinion, express only the often observed
fact that many models, be they relevant or irrelevant, can
reproduce superficially a set of characteristics (see for in-
stance a related discussion on mechanisms of power laws
and self-organized criticality in chapters 14 and 15 of [19]).

In order for trading to occur and to fully specify the
price trajectory, a clearing mechanism has to be speci-
ficed. Here, we use a market maker who furnishes assets
in case of demand and buys assets in case of supply [15].
The price fixing equation (2) implicitly assumes the pres-
ence of a market-maker, since the excess demand of the
agents A(t) always finds a counterpart. For instance, if
the cumulative action of the agents is to sell 10 stocks,
A(t) = −10, the market-maker is automatically willing to
buy 10 stocks at the price given by (2). As pointed out in
reference [15], expression (2) leads to an unbound market-
maker inventory SM (t). In order to lower his inventory
costs and the risk of being arbitraged, a market-maker
will try to keep his inventory secret and in average close

to zero [10]. As shown in [15], this can be achieved by the
following generalization of (2):

r(t) ≡ ln(p(t)) − ln(p(t − 1)) = (A(t) − SM (t))/λ, (5)

with SM (t) = −∑t−1
t=0 A(t). Expression (5) implies that,

the larger is the long position the market-maker is holding,
the more he will lower the price in order to attract buyers,
and vice versa for a short position. Another way to ensure
the same behavior is to introduce a spread or change the
available liquidity [17].

We first study the price formation using (2) and result-
ing from a market competition between agents with payoff
function (3) and compare it with the MG case (1) in the
case with no constraint on the number of stocks held by
each agent (i.e., an agent can open a new position at each
time step). Contrary to the MG case, we find that the
price always diverges to infinity or goes zero within a few
tens or hundreds of time steps. This behavior is observed
for all values of N, m, s. Similar results are found if we re-
placed the price equation (2) with (5) which includes the
market-maker strategy. The reason for this non-stationary
behavior is that agents, using (3) as pay-off function, are
able to collaborate to their mutual benefit. This happens
whenever a majority among the agents can agree to “lock
on” for an extended period of time to a common decision
of either to keep on selling or buying. A constant sign
of A(t) is seen from either (2)-(4) or (3)-(5) to lead to a
steady increase of the wealth of those agents sticking to
the majority decision. A “stubborn majority” manages to
collaborate by sticking to the same common decision –
they all gain by doing so at the cost of the market-maker
who is arbitraged. The mechanism underlying this coop-
erative behavior is the positive feedback resulting from a
positive majority A(t) which leads to an increase in the
price (5) which in turn confirms the “stubborn majority”
to stick to their decision and keep on buying, leading to
a further confirmation of a positive A(t). This situation
is reminiscent of wild speculative phases in markets, such
as occurred prior to the October 1929 crash in the US,
before the 1994 emergent market crises in Asia, and more
recently during the “new economy” boom on the Nas-
daq stock exchange, in which margin requirements are de-
creased and/or investors are allowed to borrow more and
more on their unrealized market gains. This situation is
quite parallel to our model behavior in which agents can
buy without restrain, pushing the prices up. Of course,
some limiting process will eventually appear, often lead-
ing to the catastrophic stop of such euphoric phase.

We turn to the more realistic case where agents have
bounded wealth, and study the limiting case where agents
are allowed to keep only one long/short position at each
time step. With this constraint, the previous positive feed-
back is no longer at work. Holding a position, an agent will
contribute to future price changes only when she changes
her mind. Thus, a “stubborn majority” can not longer di-
rectly influence future price changes through the majority
term A(t), but only now indirectly through the impact on
the market maker strategy SM (t) in (5). Figure 2a show
typical examples of price trajectories using (3)-(5) with
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Fig. 2. Price, wealth of market-maker and risk-return plots for
three different parameter choices using the payoff function (3)
and the constraint that agents can only accumulate one po-
sition at a time. Solid line and black circle: m = 10, s = 4;
dashed-dotted line and circle: m = 10, s = 10; dotted line and
square: m = 8, s = 10.

agents keeping a single position (short/long) at any times,
for three different choices of parameter values (N, m, s).
The time series are quite similar to typical financial price
series and possess their basic stylized properties (short-
range correlation of returns, distribution of returns with
fat tails, long-range correlation of volatility [20]). The cor-
responding wealth of the market maker is shown in Fig-
ure 2b. It exhibits a systematic growth, interrupted rarely
for some short periods of time with small losses. The
stochastic nature of the price trajectories is translated
into an almost deterministic wealth growth for the market-
maker, who is an almost certain winner (as it should and
is in real market situations to ensure his survival and prof-
itability). The market maker is similar to a casino provid-
ing services or entertainments and which profits from a
systematic bias here resulting from the lack of coopera-
tivity of the agents.

For each agent i, we define a risk parameter

Ri(t) = 〈(dWi(t) − 〈dWi〉t)2〉t (6)

where dWi(t) is the change of wealth of agent i between t
and t − 1. Ri(t) is the volatility of the wealth of agent i.
The average return per time step 〈dWi〉 for each of the
N = 101 different agents as a function of his volatility Ri is
shown in Figure 2c (each point corresponds to one agent).
Since agents choose either a short or a long position at
each time step, a perfect performing agent is a return rec-
tifier taking no risk. Similarly, the worst performing agent
is consistently moving against the market, again with the
risk defined from (6) equal to zero. This explains why the
risk-return behavior seen in Figure 2c is an mirror image
of the risk-return efficient frontier in Markovitz standard
portfolio theory [16]. The figure shows that even though
the market-maker arbitrages the agents as a group, some
“clever” agents are still able to profit from their trade with
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Fig. 3. Probability P (m) for the market-maker to arbitrage
the group of agents using (3)-(5) as a function of the memory
length m. P (m) is determined from the market-maker wealth
after T time steps and by averaging over 100 simulations with
different initial configurations. The parameters used are N =
101, s = 5. Similar results are found using different N, s.

a risk-return profile which should be unstable in the sense
of standard economic theory. It is however a robust and
stable feature of our model. This property results funda-
mentally from the heterogeneity of the strategies and can
not be captured by a representative agent theory.

To study further the competition between the agents
as a group and the market-maker, we let the $-game evolve
for T time steps and measure if the market-maker has ar-
bitraged the agents, i.e., if his wealth is positive at the
end of the time period T . Figure 3 shows the probability
P (m) for the market-maker to arbitrage the agents versus
the memory of the agents m. For m = 1, the agents al-
ways exploit the market-maker according to the positive
feedback mechanism involving the “stubborn majority”
described above. As m increases, P (m) increases and, for
the largest memory m = 11 of the agents, the market-
maker arbitrages the group of agents with probability 1.
This correspond to the examples illustrated in Figure 2.
In between, there is a competition between cooperativ-
ity between the agents and the destructive interferences
of their heterogeneous strategies. The finite-size study of
P (m) as a function of T suggests the existence of a sharp
transition in the large T limit for m ≈ 9. Below this mem-
ory length, the set of strategies available to agents allow
them to sometimes cooperate successfully. As the com-
plexity of the information increases, their strategies are
unable to cope with the large set of incoming information
and the chaotic desynchronized behavior that results fa-
vors the market maker. This could be termed the curse of
intelligence.

We will report elsewhere on extensions of this model
with traders who act at different time scales and with
different weights and on the detection of large price move-
ments in the spirit of [18].
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